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Abstract. We analyse the coherence properties of two particles trapped in a one-dimensional harmonic
potential. This simple model allows us to derive analytic expressions for the first and second order coherence
functions. We investigate their properties depending on the particle nature and the temperature of the
quantum gas. We find that at zero temperature non-interacting bosons and fermions show very different
correlations, while they coincide for higher temperatures. We observe atom bunching for bosons and atom
anti-bunching for fermions. When the effect of s-wave scattering between bosons is taken into account, we
find that the range of coherence is enhanced or reduced for repulsive or attractive potentials, respectively.
Strongly repelling bosons become in some way more “fermion-like” and show anti-bunching. Their first
order coherence function, however, differs from that for fermions.

PACS. 05.30.-d Quantum statistical mechanics – 03.75.-b Matter waves – 42.50.Lc Quantum fluctuations,
quantum noise, and quantum jumps

1 Introduction

The experimental realisation of Bose-Einstein condensa-
tion [1] has led to the elaboration of a theory of the co-
herence of matter waves [2] in analogy with the coherence
theory of light [3,4]. In fact, the strong coherence of cold
bosons is one of the most fascinating features of a quan-
tum gas and was observed in the form of interferences and
measurements of first and higher order coherence func-
tions [5,6]. With increasing temperature the coherence di-
minishes and the atomic cloud behaves increasingly as an
ensemble of particles rather than a macroscopic quantum
object [7–9].

The coherence properties of a quantum gas can be cal-
culated from the single and two particle density matrices
and depend on the nature of the particles, their inter-
actions and the temperature. In most cases, there is no
analytic expression for the required density matrices and
the coherence properties are evaluated numerically within
the mean field theory. Although this approach yields good
agreement with experiments, it can be hard to follow the
underlying physics through the process. In this paper we
present a different approach: by considering exactly two
trapped particles in a one-dimensional harmonic poten-
tial we are able to calculate the two-particle states ex-
plicitly [10]. This allows us to find analytic solutions for
the coherence functions and in particular for the effect of
interaction on the coherence. We would like to mention
related work by Markus Cirone and coworkers [11] who,
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using a similar approach, were able to investigate the in-
fluence of interaction on the formation of Bose Einstein
condensation for two particles.

To first order, the interaction is described by s-wave
scattering and can be modelled by a Dirac delta func-
tion potential. As s-wave scattering is not allowed for
fermions we treat them as interaction free. It is worthwhile
noticing that, in the limit of infinite interaction strength,
the Dirac delta potential describes a Tonks gas [12], i.e.
one-dimensional hard-core particles of infinitely small size.
Tonks gasses at zero temperature have exact many body
energy eigensolutions, so that their coherence properties
can be calculated analytically. Unlike our model, they can
contain an arbitrary number of particles, however, an ex-
tension to higher temperatures is more problematic.

Many features of quantum gas coherence are already
manifest in the physics of our simple two-particle model:
we observe that non-interacting bosons show coherence
in wider regions than fermions. The degree of second or-
der coherence displays bunching for bosons while anti-
bunching is observed for fermions. For interacting bosons
we find that a short range repulsive force enhances the
range of coherence and decreases bunching effects, while
an attractive force reduces the range of coherence and in-
creases bunching effects. Indeed, bosons with a repulsive
potential can present properties that are usually associ-
ated with fermions, and we compare the coherence prop-
erties of two strongly repelling bosons with those of two
non-interacting fermions. The effect of interaction on the
behaviour at a particle beam splitter has previously been
studied in [13]. In this case the interaction between bosons
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was shown to render the output statistics more fermion-
like, irrespective of the sign of the interaction potential.

2 Wave functions for two trapped particles

Quantum gasses are usually described within the second
quantisation formalism in the grand canonical ensemble.
In this paper, we deal with coherence properties of ex-
actly two particles and thus work in the canonical ensem-
ble. This allows us to express the coherence properties of
the two trapped atoms as a function of their two-particle
wave function which we will derive in this section. We
restrict ourselves to a one-dimensional geometry in which
the interaction between the particles can be modelled by a
delta function [10]. Such one-dimensional harmonic trap-
ping potentials are realised in waveguide experiments as
reported in [14].

The Hamiltonian for two particles of mass m trapped
in a harmonic potential of frequency ω is

H =
x2

1

2
+
p2
1

2
+
x2

2

2
+
x2

2

2
+ U(|x1 − x2|), (1)

where x1,2 designate the positions of the two particles,
p1,2 their momenta, and U the interaction potential be-
tween the particles. We are using harmonic oscillator units
with positions given in units of

√
�/mω, momenta in

units of
√

�mω and energies in units of �ω. Note that
for two identical particles the potential has to be an
even function of their relative positions. This Hamilto-
nian can be separated into a Hamiltonian for the mo-
tion of the centre of mass, Hc, and a Hamiltonian for the
relative motion, Hr, by introducing the new operators:
xc = (x1 +x2)/

√
2, pc = (p1 + p2)/

√
2, xr = (x1 −x2)/

√
2

and pr = (p1 − p2)/
√

2. The Hamiltonian can then be
written as H = Hc +Hr, with

Hc =
1
2
(p2

c + x2
c), (2)

Hr =
1
2
(
p2
r + x2

r

)
+ U

(√
2|xr|

)
. (3)

The motion of the centre of mass is governed by a har-
monic oscillator Hamiltonian and the normal modes are
the well-known number states |n〉 with dimensionless en-
ergies En = n, for n = 0, 1, 2, ..., ignoring the zero-point
energy. The centre-of-mass modes in position representa-
tion are

un(xc) = 〈xc|n〉 =
1

π1/42n/2n!1/2
Hn(xc)e−x2

c/2, (4)

where Hn denotes the nth Hermite polynomial. The eigen-
states |ν〉 of the relative motion and their energies Eν = ν
depend on the potential U , where {ν} is a set of real num-
bers for a given potential. As the potential is an even func-
tion of xr, the Hamiltonian Hr commutes with the parity
operator. We denote the normalised eigenmodes of Hr by
wν(xr). Bosons require symmetric wavefunctions in xr and
fermions antisymmetric ones. Consequently, only the even

functions in xr are bosonic eigenmodes, the odd functions
are fermionic eigenmodes, and both are eigenmodes for
distinguishable particles. It is convenient to introduce the
general mode function

vν(xr) = 〈xr|ν〉 =
wν (xr) + bwν (−xr)

1 + b2
, (5)

in order to take into account the symmetry properties of
the two-particle wavefunction, where b = +1 for bosons,
0 for distinguishable particles and −1 for fermions. The
eigenstates of the two-particle system can then be de-
scribed by |n, ν〉 which obey H |n, ν〉 = (n+ ν)|n, ν〉.

2.1 Non-interacting particles

For non-interacting particles, i.e. U(x) = 0, the relative
motion as well as the centre of mass motion are governed
by a harmonic oscillator Hamiltonian, with eigenmodes
given by the number states (4). However, only number
states that are compatible with the particle-nature depen-
dent symmetry are allowed. This means that the relative
motion of bosons/fermions is described by the even/odd
number states, respectively, whereas distinguishable parti-
cles can be in any number state. According to equation (5)
the symmetrised modes for the relative motion can for-
mally be written as

vν (xr) =
uν (xr) + buν (−xr)

1 + b2
, (6)

where ν = 0, 1, 2, ...

2.2 Interacting particles

The interaction between particles can be described to
first order by s-wave scattering which does not occur for
fermions. For this reason, we will concentrate on the effect
of interaction on the coherence of bosons and distinguish-
able particles. For cold particles, s-wave scattering can be
modelled by a point-like potential of zero range, as the
finer details of the interaction potential become unimpor-
tant compared to their large de-Broglie wavelength. In one
dimension, a zero-range potential can be represented by a
Dirac delta function [1,10]:

U(|x1 − x2|) = aδ (x1 − x2) , (7)

where a is the interaction strength a. The resulting
Hamiltonian for the relative motion (3) is

Hr =
p2
r

2
+
x2

r

2
+ aδ(

√
2xr). (8)

The eigenmodes wν(xr) can therefore be determined as
the solutions of the Schrödinger equation

− 1
2
∂2wν(xr)
∂x2

r

+
1
2
x2

rwν (xr) +
a√
2
δ (xr)wν (xr) =

νwν (xr) . (9)



S. Franke-Arnold et al.: Coherence properties of two trapped particles 375

This equation is solved by combinations of parabolic cylin-
der functions Dν(

√
2xr) [15]. The boundary conditions at

x→ ±∞ as well as the behaviour at x = 0 determine the
choice of functions and the value of ν for a given interac-
tion strength a. We note that for a = 0 the Schrödinger
equation reduces to the harmonic oscillator equation. In
this case ν is integer, and Dν(

√
2xr) are proportional to

the number state wavefunctions (4). We note that equa-
tion (9) is identical to the harmonic oscillator equation
at xr �= 0. This means that the odd eigenmodes w2m+1,
which are zero at xr = 0, will not be altered by the in-
teraction potential and are still given by the odd number
states. The even eigenmodes are given by

wν (xr) =
Dν

(√
2|xr|

)
√

2
∫ +∞
0

D2
ν

(√
2xr

)
dxr

, (10)

which are normalised so that
∫ +∞
−∞ dx v2

ν(x) = 1. The
eigenfunctions of interacting bosons are therefore given by
the parabolic cylinder functions, whereas the eigenfunc-
tions of interacting distinguishable particles alternate be-
tween the parabolic cylinder functions and the odd num-
ber states. The value of ν can be determined by integrating
(9) over xr between −ε and +ε and taking the limit ε→ 0.
This leads to

−w′
ν(0+) +

a√
2
wν (0) = 0. (11)

Here we have used the fact that w′
ν(0−) = −w′

ν(0+), as the
derivative of the even function vν is odd. The value of the
parabolic cylinder function and its derivative at the ori-
gin are [15] Dν (0) = 2ν/2√π/Γ (1/2 − ν/2) , D′

ν (0+) =
−2ν/2+1/2

√
π/Γ (−ν/2) . By inserting these values into

equation (11), keeping in mind that v′ν ∼ √
2D′

ν , we find
that the set of possible energies ν is related to the inter-
action strength a by

23/2Γ
(

1
2 − ν

2

)
Γ
(− ν

2

) + a = 0. (12)

The energy levels as a function of the interaction strength
are shown in Figure 5a. For an attractive potential, i.e.
a < 0, the energy is reduced compared to the correspond-
ing harmonic oscillator level, and for a repulsive poten-
tial, i.e. a > 0, increased. The even number states have
extrema at xr = 0, which are “dented” by an attractive or
repulsive potential as shown in Figures 5b–5g. In fact, an
infinitely strong repulsive interaction generates a node at
xr = 0, whereas for xr �= 0 the eigenmodes still have to be
solutions of the harmonic oscillator. The squared modu-
lus therefore becomes identical to that of the next higher
(odd) number state. Similarly, the squared modulus of the
wavefunction in an infinitely strong attractive potential
becomes identical to that of the next lower (odd) number
state, with the exception of the ground state. Thus the en-
ergies of the higher order states increases from �ω (2n− 1)
to �ω (2n+ 1) when a increases from −∞ to +∞, while
the energy of the ground state increases from minus in-
finity to unity when a increases from −∞ to +∞. The

eigenenergies of bosons subject to an infinitely strong re-
pulsive potential are the same as the eigenenergies of non-
interacting fermions. This is reminiscent of the energy
structure of Tonks gasses: the many body energy eigen-
solutions of Tonks gasses are found using the mapping
theorem [12] to a gas of spinless fermions. As a result,
Tonks gasses have the same density but different coher-
ence properties as fermions.

3 Coherence properties

Generally, the coherence properties of matter waves can
be described in terms of the operators ψ̂(x) and ψ̂†(x) [2]
which annihilate and create, respectively, a particle at
the position x. These operators satisfy the commuta-
tion relation [ψ̂(x), ψ̂†(y)]B = δ(x − y) for bosons and
the anti-commutation relation {ψ̂(x), ψ̂†(y)}F = δ(x − y)
for fermions. With the subscripts B and F we denote
bosons and fermions, respectively. We normally assume,
that the two particles in the trap are indistinguishable.
However, if each particle is in a different internal quantum
state they become distinguishable, and are each associated
with an individual generation and annihilation operator
ψ̂†

1(x), ψ̂
†
2(x), ψ̂1(x), ψ̂2(x). In this case, operators belong-

ing to different particles will commute if they are bosons
and anticommute if they are fermions [ψ̂i(x), ψ̂

†
j (y)]B =

δijδ(x− y) and {ψ̂i(x), ψ̂
†
j (y)}F = δijδ(x− y).

The coherence properties of the atoms are apparent in
interference experiments. These can display interference of
amplitudes or of intensity. The quality of interference for
amplitudes and intensities is measured by the first and
second order coherence function, respectively. For indis-
tinguishable particles, these are defined as

G
(1)
B,F (x, y) =

〈
ψ̂† (x) ψ̂ (y)

〉
, (13)

G
(2)
B,F (x, y) =

〈
ψ̂† (x) ψ̂† (y) ψ̂ (y) ψ̂ (x)

〉
· (14)

For distinguishable particles, however, we need to consider
the internal degree of freedom. We will assume that the
detection process is not sensitive to the internal quantum
number by which the particles may be distinguished. This
is to make a comparison with bosons and fermions for
which such a distinction is impossible, even in principle.
We note, however, that as we could at least in principle
identify the detected particle, there is no interference as-
sociated with 〈ψ̂†

1 (x) ψ̂2 (y)〉 and similar terms. The coher-
ence functions for distinguishable particles are therefore

G
(1)
D (x, y) =

〈
ψ̂†

1 (x) ψ̂1 (y)
〉

+
〈
ψ̂†

2 (x) ψ̂2 (y)
〉
, (15)

G
(2)
D (x, y) =

〈
ψ̂†

1 (x) ψ̂†
2 (y) ψ̂2 (y) ψ̂ (x)1

〉
+
〈
ψ̂†

2 (x) ψ̂†
1 (y) ψ̂1 (y) ψ̂ (x)2

〉
· (16)

In order to remove the effects of density variations, it
is useful to define normalised versions of the coherence
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functions, the degrees of first and second order coherence:

g(1) (x, y) =
G(1) (x, y)√

G(1) (x, x)G(1) (y, y)
, (17)

g(2) (x, y) =
G(2) (x, y)

G(1) (x, x)G(1) (y, y)
· (18)

The modulus of the degree of first order coherence mea-
sures the correlation between the positions x and y. As we
are dealing with exactly two particles, the degree of sec-
ond order coherence is proportional the probability that
one particle is found at x and the other at y. It is evi-
dent, that g(2)(x, y) depends crucially on the spin statis-
tics of the wavefunction. In the following we will write the
first and second order coherence functions in terms of the
eigenmodes un and vν and evaluate the averages in the ba-
sis of the two-particle states |n, ν〉. We can construct the
two-particle state |n, ν〉 by applying the generation oper-
ators ψ̂†(x1) and ψ̂†(x2) onto the vacuum or no-particle
state |vac〉, and integrating over the centre of mass mode
function un((x1 + x2)/

√
2) and the relative mode function

wν((x1 − x2)/
√

2). The normalised two-particle state can
then be written as

|n, ν〉B,F =
1√
2

∫
dx1dx2 un

(
x1 + x2√

2

)
wν

(
x1 − x2√

2

)

× ψ̂†(x1)ψ̂†(x2)|vac〉 (19)

|n, ν〉D =
∫

dx1dx2 un

(
x1 + x2√

2

)
wν

(
x1 − x2√

2

)

× ψ̂†
1(x1)ψ̂

†
2(x2)|vac〉 · (20)

For bosons ψ̂†(x1)ψ̂†(x2) = ψ̂†(x2)ψ̂†(x1) so that the in-
tegral vanishes for odd functions wν , whereas for fermions
ψ̂†(x1)ψ̂†(x2) = −ψ̂†(x2)ψ̂†(x1) so that the integral van-
ishes for even functions wν . For distinguishable particles
both even and odd functions wν are possible. This means
that the states with allowed symmetries are selected au-
tomatically. In the remaining sections we will study the
behaviour of thermal states. In this case the density ma-
trix is diagonal in n and ν and we can write the density
matrix as

ρ =
∑
n,ν

Pn,ν |n, ν〉〈n, ν|, (21)

where Pn,ν is the probability that the state |n, ν〉 is occu-
pied. By expressing the expectation value in (13) via the
density matrix we find

G(1) (x, y) =
∑
n,ν

Pn,ν

〈
n, ν

∣∣∣ψ̂† (x) ψ̂ (y)
∣∣∣n, ν〉 · (22)

We can now insert the two-particle state (19) for indistin-
guishable particles and use the corresponding commuta-
tion and anti-commutation relations. The first order co-

herence function can then be written as

G(1) (x, y) = 2
∫ +∞

−∞
dz
∑
n,ν

Pn,νun

(
z + y√

2

)
u∗n

(
x+ z√

2

)

× vν

(
z − y√

2

)
v∗ν

(
z − x√

2

)
· (23)

Note that by using equations (15, 19), the same expression
can be found for distinguishable particles. The difference
in evaluating G(1) for distinguishable or indistinguishable
particles is inherent in the allowed states of the relative
motion and in the values of the Pn,ν .

Similarly we can derive the second order coherence
function:

G(2) (x, y) =
∑
n,ν

Pn,ν

〈
n, ν

∣∣∣ψ̂† (x) ψ̂† (y) ψ̂ (y) ψ̂ (x)
∣∣∣n, ν〉

= 2
∑
n,ν

Pn,ν

∣∣∣∣un

(
x+ y√

2

)
vν

(
x− y√

2

)∣∣∣∣
2

· (24)

It is worthwhile noticing that, for a pure state, the second
order coherence function is proportional to the modulus
squared of the two-particle wave function. From equa-
tions (23, 24), it is possible to calculate the coherence
functions for any state of the two trapped interacting
particles. In the following sections, we will use these ex-
pressions to analyse the coherence properties of two non-
interacting thermal particles and then two interacting
bosons or distinguishable particles.

4 Coherence properties of non-interacting
particles

In this section we consider non-interacting particles. The
centre of mass modes are given by the harmonic oscilla-
tor modes (4) and the modes of relative motion consist of
the even, odd, or all harmonic oscillator modes for bosons,
fermions, or distinguishable particles, respectively (6). We
begin by evaluating the first order coherence function at
zero and higher temperatures. At T = 0 we can evaluate
G(1) directly from the second quantised formulae (13, 15).
Bosons and distinguishable particles occupy the ground
state of the harmonic oscillator so that the first order co-
herence function

G
(1)
B,D(x, y) = 2u0(x)u0(y) =

2√
π

exp
(
−x

2 + y2

2

)
(25)

is a 2D Gaussian function as shown in Figures 1a and 1c.
For fermions at zero temperature the single particle den-
sity matrix is in a mixture of the two lowest energy levels
of the harmonic oscillator so that

G
(1)
F (x, y) = u0(x)u0(y) + u1(x)u1(y)

=
1 + 2xy√

π
exp

(
−x

2 + y2

2

)
(26)
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Fig. 1. Density plots of the
first order coherence function
G(1)(x, y) for (a) two bosons,
(b) two fermions and (c) two
distinguishable particles at the
temperatures T = 0. Plot (d)
shows G(1)(x,−x), i.e. the first
order coherence function along
the diagonal of the density plots.
Here, bosons, fermions and dis-
tinguishable particles are dis-
played as solid, dashed and dot-
ted lines, respectively. Similarly,
plots (e) to (h) show the cor-
responding behaviour at T =
�ω/kB and plots (i) to (l) at T =
10�ω/kB. Note that the colours
of each density plots are chosen
such that black corresponds to
the minimum value and white to
the maximum value of the dis-
played function. Absolute values
can be taken from the plots (d),
(h) and (l).

as shown in Figure 1b. At zero temperature, the difference
between bosons and fermions is most striking as fermions
may occupy the mode u1 but bosons or distinguishable
particles do not. While the first order coherence func-
tions of bosons is centered around x = y = 0, the one
for fermions shows two peaks at x = y = ±1/2. This is as-
sociated with the “repelling force” between the Fermions.
Unlike bosons and distinguishable particles, fermions show
regions of negative values for G(1)

F (x, y) with minima at
x = −y = ±√3/2, as can be seen in Figure 1d. These
negative values indicate destructive interference which re-
sults when negative parts of one fermionic wavefunction
overlap with positive parts of the other.

More generally, we consider non-interacting parti-
cles at finite temperature. At a temperature T the
state |n, ν〉 is occupied with the probability Pn,ν ∝
exp [−(n+ ν)β�ω], where β = 1/kBT and kB denotes the
Boltzmann constant. By inserting (6) into the expression
for G(1)(x, y) (23) one obtains

G(1) (x, y) =
κ
(
1 + b2

)
√

tanh
(

β�ω
2

) exp

(
−
(
x+ y

2

)2

× tanh
(
β�ω

2

)
−
(
x− y

2

)2

coth
(
β�ω

2

))

+ 2κb
√

tanhβ�ω exp

(
−
(
x+ y

2

)2

× tanh (β�ω) −
(
x− y

2

)2

coth (β�ω)

)
,

(27)

where

κ =
1√
π

2
(1 + b2) coth(β�ω

2 ) + 2b
· (28)

Here we have used the identity

+∞∑
n=0

e−β�ωnun (x) un (y) =

exp
(
− (x+y

2

)2
tanh

(
β�ω
2

)
− (x−y

2

)2
coth

(
β�ω
2

))
√
π
√

1 − e−2β�ω
· (29)

In the limit of T → 0, this equation coincides with the
direct calculation from the second quantised formula pre-
sented above. While at low temperatures fermions and
bosons show very different coherence properties, at high
temperatures they behave similarly and, in fact, act like
distinguishable particles. This is illustrated in Figure 1,
where the temperature increases from T = 0 in the top row
(a–d), via temperatures comparable to the trapping tem-
perature T = �ω/kB in the middle row (e–h) up to high
temperatures of T = 10�ω/kB in the bottom row (i–l).
With rising temperature, the particles are in “increasingly
mixed” states so that the Fermi-exclusion principle be-
comes less important. Mathematically this is manifest in
the fact that the second term in equation (27) becomes
negligible compared to the first term and hence the
first order coherence functions for bosons, fermions and
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Fig. 2. Density plots of the
degree of first order coher-
ence g(1)(x, y) for two bosons,
fermions and distinguishable
particles at the temperatures
T = 0, T = �ω/kB and
T = 10�ω/kB, displayed as in
Figure 1.

distinguishable particles coincide:

G
(1)
B,F,D (x, y) 	 2β�ω√

π tanh
(

β�ω
2

) exp

(
−
(
x+ y

2

)2

× tanh
(
β�ω

2

)
−
(
x− y

2

)2

coth
(
β�ω

2

))
· (30)

We note that at high temperature the first order coherence
function for two particles is twice that of a single thermal
particle [9]. This can be explained by the fact that the
two-particle wave function is the product of two single-
particle wavefunctions. The first order coherence function
is shown in Figure 1. It is given by a Gaussian with a
width proportional to coth(β�ω/2) in the direction x+ y
and a width proportional to tanh(β�ω/2) in the direction
x−y. This is associated with the fact that with increasing
temperature the higher order modes are more likely to be
occupied, so that the width of the wavepacket and there-
fore also the width of G(1)(x, x) increases. At the same
time the correlation between the wavefunction at differ-
ent positions and therefore also the width of G(1)(x,−x)
decreases, as can be seen in Figures 1d, 1h and 1l.

In order to eliminate the influence of density fluctua-
tions we can alternatively investigate the degree of first
order coherence g(1) defined in (17). The modulus of this
function is proportional to the visibility of interference
fringes seen in experiments. At T = 0 we find by insert-
ing (25, 26):

g
(1)
B,D(x, y) = 1, (31)

g
(1)
F (x, y) =

1 + 2xy√
(1 + 2x2)(1 + 2y2)

, (32)

as shown in Figures 2a–2d. The constant value of 1 indi-
cates that bosons and distinguishable particles are first-
order coherent at zero temperature, and in this way
are reminiscent of classical stable waves or equivalently
of a single mode. For fermions, however, the degree of
first order coherence varies between coherent regions of
g
(1)
F (x, y) = ±1, and incoherence with g(1)

F (x,−1/2x) = 0.
At these positions the amplitude of the first excited state
destructively interferes with the amplitude of the ground
state. At higher temperatures more modes contribute to
the two-particle state so that the amplitude correlations
diminish. Figures 2e–2l show how, with increasing temper-
ature, the incoherent regions of all particles extend until
at very high temperatures coherent behaviour can only be
found for g(1)(x, x).

We now proceed to investigate the second order coher-
ence function for particles at different temperatures. We
begin by analysing the form of the second quantised for-
mula for G(2)(x, y) (14, 16) at zero temperature. Again
we are using the fact that two bosons or distinguishable
particles are allowed to occupy the same ground state of
the harmonic oscillator, whereas two fermions have to fill
up the lowest two states, leading to

G
(2)
B,D(x, y) = 2u2

0(x)u
2
0(y) =

2
π

exp
(−(x2 + y2)

)
, (33)

G
(2)
F (x, y) = (u1(x)u0(y) − u0(x)u1(y))2

=
2(x− y)2

π
exp

(−(x2 + y2)
)
, (34)

illustrated in Figures 3a–3d. The second order coher-
ence function for bosons and distinguishable particles is
given by a two-dimensional Gaussian centred around zero,
whereas fermions show a bimodal distribution with peaks
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Fig. 3. Density plots of the
second order coherence func-
tion G(2)(x, y) for two bosons,
fermions and distinguishable
particles at the temperatures
T = 0, T = �ω/kB and
T = 10�ω/kB, displayed as in
Figure 1.

at x = −y = 1/
√

2. As G(2)(x, y) is proportional to the
probability of finding one particle at x and the other
at y, G(2)

F (x, x) = 0 results directly from the exclusion
principle for fermions. This result obviously holds for all
temperatures.

For arbitrary temperatures, we evaluate G(2)(x, y)
from equation (24):

G(2) (x, y) =
κ√
π

(
1 + b2

)
exp

(
− (x2 + y2

)
tanh

(
β�ω

2

))

+
2bκ√
π

exp

(
− (x+ y)2

2
tanh

(
β�ω

2

)

− (x− y)2

2
coth

(
β�ω

2

))
, (35)

with κ given in (28). The behaviour of G(2) at vari-
ous temperatures is shown in Figure 3. Unlike G(1), the
second order coherence function always differentiates be-
tween bosons, fermions and distinguishable particles, even
at high temperatures. For distinguishable particles, G(2)

is given by a two-dimensional Gaussian with a width that
increases with temperature as 2 coth(β�ω/2). For indistin-
guishable particles the Gaussian width in direction x + y
is 2 coth(β�ω/2) whereas the width in direction x− y de-
pends on the particle nature. Bose-enhancement leads to
a preferred occupation of the same state and thus to a
peak at G(2)

B (x, x), whereas Fermi-exclusion leads to the
vanishing of G(2)

F (x, x). The plots of G(2)(x,−x) in Fig-
ures 3d, 3h and 3l illustrate how distinguishable particles
with increasing temperature tend to behave like the aver-
age of fermions and bosons.

Again, we can eliminate the effect of density fluctua-
tions by evaluating the degree of second order coherence
according to (18). At zero temperature we find by insert-
ing (25) and (34) for fermions or (26) and (33) for bosons
or distinguishable particles:

g
(2)
B,D(x, y) =

1
2
, (36)

g
(2)
F (x, y) =

(x− y)2

2
(
x2 + 1

2

) (
y2 + 1

2

) , (37)

illustrated in Figures 4a–4d. It is well-known from op-
tics that anti-bunching of n particles in a single mode
is associated with a value of g(2) = 1 − 1/n [3]. The con-
stant value of 1/2 for the degree of second order coherence
thus indicates perfect anti-bunching of the two bosons or
distinguishable particles at zero temperature. For distin-
guishable particles this is valid at any temperature and
indeed for any state, however, it is a consequence of our
definition of the coherence functions for distinguishable
particles rather than a display of non-classical features.
For fermions, g(2) at T = 0 varies between 0 and 1 at dif-
ferent positions. In particular, we find that g(2)

F (x, x) = 0
resulting from the Fermi-exclusion principle.

At arbitrary temperatures, the degree of second or-
der coherence can be calculated analytically by insert-
ing equations (27) and (35) into (18). For bosons and
fermions the degree of second order coherence varies with
temperature, as is illustrated in the first two columns
of Figures 4 respectively. For bosons g(2)

B (x, x) increases
asymptotically from 1/2 at zero temperature to 1 at high
temperature, whereas for fermions g(2)

F (x, x) = 0 at all
temperatures. The crucial dependence of the second or-
der coherence on the particle nature can best be seen on
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Fig. 4. Density plots of the
degree of second order coher-
ence g(2)(x, y) for two bosons,
fermions and distinguishable
particles at the temperatures
T = 0, T = �ω/kB and
T = 10�ω/kB, displayed as in
Figure 1.

g(2)(x,−x). This function is displayed in Figures 4d, 4h
and 4l for different values of the temperature. At high
temperature, g(2)

B (0, 0) → 1 for bosons, g(2)
F (0, 0) = 0 and

g
(2)
D (0, 0) = 1/2, whereas g(2)(x,−x) → 1/2 when x → ∞

for all particles. Bosons clearly display bunching effects
and fermions anti-bunching. This indicates that the degree
of second order coherence is most suitable to display non-
classical behaviour of the bosons and fermions, in analogy
to its role in optics.

5 Coherence properties of interacting
particles

Mathematically, interacting particles differ from non-
interacting ones in that their relative motion is described
by parabolic cylinder functions rather than by number
states. By inserting the modes of relative motion (10) and
the centre-of-mass modes (4) into (23) and (24) we find
general expressions for the first and second order coher-
ence functions, which can be numerically evaluated for
any probability distribution Pnν . In this paper, however,
we will concentrate on interacting particles at zero tem-
perature as in this regime the interaction plays an im-
portant role. For higher temperatures the effect of inter-
action becomes less significant since the influence of the
potential decreases for higher order modes as depicted in
Figure 5. At T = 0 the centre-of-mass mode is given by
u0(xc) = π−1/4 exp(−x2

c) and the modes of the relative
motion are given by the wν(xr) from (10), where ν is
the lowest value permitted by (12) for a given interac-
tion strength a. A selection of these modes is shown by
the solid lines in Figures 5b–5g. While for a = 0 the rel-
ative mode is given by a Gaussian, repulsive interaction

will result in a sharper peak at xr = 0 and attractive in-
teraction will decrease the mode function at xr = 0 until
for an infinitely strong repulsion vν(0) = 0. In fact, for
a→ ∞ we know that vν(xr) = u1(|xr)| = |u1(xr)|.

The first and second order coherence function can then
be evaluated from (23, 24):

G(1)(x, y) =
2√
π

e−(x2+y2)/2

∫ ∞

−∞
dz e−z2−z(x+y)

× wν

(
z − y√

2

)
wν

(
z − x√

2

)
, (38)

G(2)(x, y) =
2√
π

e−(x+y)2w2
ν

(
x− y√

2

)
· (39)

Since the width of the eigenmodes increases with increas-
ing interaction,G(1)(x, x) becomes broader and develops a
bimodal distribution for strongly repulsive interaction, as
illustrated in Figure 6a. Similarly, also G(1)(x,−x) broad-
ens with increasing interaction strength, shown in Fig-
ure 6b. At the same time, the shape of the first order
coherence function changes from a narrow peak at a
 0,
via a Gaussian at a = 0 to a wide peak “with shoulders”
at a� 0. These appear at positions where the dent in the
wavefunction of one particle overlaps with a peak of the
other particle’s wavefunction.

Due to the form of the interaction potential, the main
influence on the second order coherence function occurs
at the origin. According to (39), the function G(2)(x, x) is
given by a Gaussian weighted with the squared parabolic
cylinder function at the origin. This leads to a constant
decrease ofG(2)(x, x) with rising interaction strength, con-
sistent with the fact that attracting bosons are more likely
to be found at the same position whereas repelling bosons
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Fig. 5. (a) Energy levels of two in-
teracting particles vs. the interaction
strength a. Bosons fill up the lev-
els shown as solid lines, whereas dis-
tinguishable particles can also occupy
the levels shown as dotted lines. (b–
g) Ground state (solid line) and first
excited state (dashed line) wavefunc-
tions of bosons for different interaction
strengths a = −5,−2.5, 0, 2.5, 5 and
a → ∞.

Fig. 6. First and second order coher-
ence functions for bosons at zero tempera-
ture with various interaction strengths: (a)
G(1)(x, x), (b) G(1)(x,−x), (c) G(2)(x, x)
and (d) G(2)(x,−x). The different curves
represent interaction strengths of a = −5
(solid lines), a = −2.5 (wide dashes), a = 0
(medium dashes), a = 2.5 (narrow dashes),
a = 5 (wide dots), a = 10 (narrow dots),
a = 25 (dot-dashes) and a → ∞ (irregular
dashes).



382 The European Physical Journal D

Fig. 7. Degree of second order coherence g(2)(0, 0) for bosons
at zero temperature as a function of the interaction strength a
displaying bunching for a negative interaction strength and
anti-bunching for a positive interaction strength. In this re-
spect repelling bosons resemble fermions, whereas attracting
bosons behave even more “boson-like”.

Fig. 8. (a) First order coherence function G(1)(x,−x) for
infinitely strongly repelling bosons (solid lines), distinguishable
particles (dotted lines) and non-interacting fermions (dashed
lines) at zero temperature. (b) Along the direction x = y the
first order coherence function coincides for the three cases.

avoid this situation, as shown in Figure 6c. In the direction
x− y, the second order coherence function is proportional
to wν(

√
2x), leading to a sharp peak for attractive inter-

action and a bimodal distribution for repulsive interac-
tion depicted in Figure 6d. The significance of this effect
becomes clearer by studying the degree of second order
coherence. Figure 7 shows the degree of second order co-
herence at the origin for varying interaction strength. We
find that a negative interaction strength leads to bunching
effects, while a positive interaction strength leads to anti-
bunching. In this way repelling bosons resemble fermions,
whereas attracting bosons behave even more “boson-like”.

In the following we study the effects of an infinitely
strong repulsive interaction in more detail. This case of
particular interest as particles with a → ∞ are form-
ing a quantum Tonks gas, extensively studied in litera-
ture [12]. Their wavefunction is given by the modulus of
the fermionic wavefunction allowing us to obtain analytic
expressions for their coherence functions. We first note
that the second order coherence function (24) contains
only squared moduli of the mode functions. Consequently,
G(2)(x, y) for Tonks particles and Fermions coincide. This
result holds at all temperatures. The first order coherence
function, however, depends on the amplitude of the wave-
function so that we expect differences for the behaviour
of Tonks particles and fermions. For bosons with a → ∞

at T = 0 we find

G(1)(x, y) = 2
∫ ∞

−∞
dz u0

(
z + y

2

)
u0

(
z + x

2

)

×
∣∣∣∣u1

(
z − y

2

)∣∣∣∣
∣∣∣∣u1

(
z − x

2

)∣∣∣∣
=

2
π

exp
(
−x

2 + y2

2

)∫ ∞

−∞
dz |z − y||z − x|

=
2
π

exp
(
−x

2 + y2

2

)

×
[
− x exp

(−y2
)

+ y exp
(−x2

)
+

√
π

2
(1 + 2xy) (1 − erf(y) + erf(x))

]
, (40)

where without loss of generality we have assumed that
x ≤ y. We note that the first order coherence function
along x − y depends on the particle nature as shown in
Figure 8a, whereas along x + y it is identical for Tonks-
Girardeau particles and fermions, see Figure 8b. The func-
tion G(1)(x,−x) contains negative regions for fermions,
resulting from destructive interference between positive
and negative regions of the fermionic wavefunction. The
wavefunction of Tonks-Girardeau particles, however, are
positive with a node at the origin. The corresponding first
order coherence function is therefore entirely positive with
turning points at the positions corresponding to an over-
lap of the node of one wavefunction with a peak of the
other.

For completeness we also investigate the coherence
properties of infinitely strongly repelling distinguishable
particles at zero temperature. Distinguishable particles
are allowed to occupy even and odd states of the rela-
tive motion. At a → ∞ the energies of each pair of even
and odd states coincides, so that distinguishable particles
at T → 0 may either be in the Tonks mode |u0(xr)| or in
the fermionic mode u0(xr). If we take the limit of T → 0
before a → ∞, distinguishable particles will behave like
Tonks-Girardeau particles, whereas if we take the limit
a→ ∞ first they will behave like the average of Fermions
and Tonks-Girardeau particles. This is the case shown by
the dotted line in Figure 8. For distinguishable particles,
G(1)(x,−x) shows neither negative regions like Fermions
nor turning points like Tonks-Girardeau particles.

We note, finally, that the second order coherence func-
tion of two Tonks-Girardeau particles coincides with that
of two fermions as only the squared modulus of the wave-
function enters the formula for G(2)(x, y) (24). This means
that infinitely strongly repelling bosons show the same in-
tensity interference as fermions.

6 Conclusion

We have demonstrated that many interesting features of
statistical physics of bosons and fermions are already con-
tained in the behaviour of two trapped particles. The first
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order coherence function and the degree of first order co-
herence at zero temperature strongly depend on the parti-
cle nature, as in this case the Fermi-exclusion principle or
the Bose-enhancement have a large impact on the respec-
tive wave functions. At higher temperatures these differ-
ences become less important and all particles show similar
first order coherence. However, intensity fluctuations as
measured by the second order coherence function depend
crucially on the particle nature at all temperatures. At
finite temperature, non-interacting bosons display bunch-
ing effects, while fermions show anti-bunching.

Furthermore, we have shown how a short range inter-
action between bosons and distinguishable particles alters
the coherence properties. A strong repulsive interaction
between bosons can lead to anti-bunching effects, whereas
an attractive interaction increases the bunching effects.
Bosons subject to an infinitely strong repulsive interac-
tion model Tonks-Girardeau particles. Their second order
coherence properties are identical to those of fermions, but
their first order coherence properties differ.

Finally, we note that our analysis, based on one spatial
dimension, can be extended to two or three spatial dimen-
sions. In such a case, the potential of interaction has to be
regularised [10,16,17] but we anticipate that the effects of
particle nature and interaction obtained in this paper will
survive the transfer to higher dimensions.
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